
Introduction to Kamiak

Training Workshop

Alan Love, Ph.D., CIRC Director

Peter Mills, Ph.D., Deputy Director

Rohit Dhariwal, Ph.D., Computational Scientist

Roy Obenchain, HPC Systems Administrator

Will Aoki, HPC Systems Administrator

Tim Neumann, Program Coordinator

hpc.wsu.edu/training Documents

hpc.wsu.edu/training/slides These slides

hpc.wsu.edu/cheat-sheet Cheat Sheet

What you will learn today

• What is Kamiak

• How to run jobs on Kamiak

– Submit batch jobs

– Interactive compute session

– Types of jobs

• Exercises

• Transferring files to and from Kamiak

• Logging into Kamiak

• Running batch jobs

• Running an interactive compute session

• Running job arrays

• Running gpu jobs

• Using scratch storage

• Using snapshots

What is Kamiak

• A cluster of computers called nodes, connected by a high-speed network

• Each computer is like your laptop, but with more cores and memory

• Applications can run in parallel over many cores and across multiple nodes

• Speeds up solving large problems

Login nodes

Compute nodes

Your laptop

/scratch/home /data

Nodes: 152

Cores: 4,616

Memory: 47 TB

Storage: 1.2 PB

GPU cores: 268,160

Kamiak Storage

• Kamiak has 3 types of storage available to users

/home/your.name 100GB per user

/data/lab/pi.labname 500GB per faculty lab group

Extra storage is available for rent from the CIRC service center

/scratch Temporary storage, 2-week lifetime, 10TB limit per user

Login nodes

Compute nodes

Your laptop

/scratch/home /data

Running Jobs on Kamiak

• Nodes are grouped into partitions, each owned by a faculty or college

• All nodes also belong to a shared kamiak partition, available to all users

• You submit a job to a partition asking for nodes, tasks, and cores

• Job gets added to a partition’s queue to wait until resources are available

• Slurm job scheduler decides who goes first, who gets what, who gets bumped

• Investors have priority access to the nodes they own

• Will preempt job in backfill if investor’s job needs its cores

• Applications only run in parallel if built to do so

• Resource requirements differ for each app

How to Run Jobs on Kamiak

There are two ways to run jobs on Kamiak

• sbatch myJob.sh Batch job submission

– Says which partition to submit to (default is kamiak)

– Says what resources your job needs (cpu’s/cores, memory, GPU’s)

– Says what program to run

• idev Interactive session on compute node

– Puts you on a compute node

– Just type in commands and see them executed

Do not run applications or installs on the login nodes,

use sbatch or idev instead to run them on a compute node

Types of Jobs

• Single node

– Single program instance

– Multithreading over multiple cores

– Threads share memory

• Multiple nodes

– Each task is a program instance

– Tasks do not share memory

– Communicate by message-passing

• GPU (Graphics Processing Unit)

– Thousands of tiny pixel cores, and matrix processors

– Offloads kernel function to run over many data points

– Requires CUDA, OpenACC

See samples in: /opt/apps/samples/advanced

GPU Offload

Result

Transferring Files

Transferring Files to and from Kamiak

Make sure you are on your laptop, not logged into Kamiak

• Open a terminal window
Terminal >> New Window (for Windows, Start >> Ubuntu)

• Copy from Kamiak to your laptop
scp -r your.name@kamiak.wsu.edu:/opt/apps/samples/tests ~/

 Recursive, copies all files From Kamiak To laptop
ls -l -R tests

• Copy from your laptop to Kamiak
scp -r tests your.name@kamiak.wsu.edu:~/

 From my laptop To my home folder on Kamiak

• Synchronize folder contents (copies changed or added files, does not delete)
rsync -ravx tests/ your.name@kamiak.wsu.edu:~/tests

 All files From laptop To Kamiak

Follow along

Logging In

Logging Into Kamiak

• Open a terminal window
Terminal >> New Window (for Windows, Start >> Ubuntu)

• Log into Kamiak
ssh your.name@kamiak.wsu.edu # To logout: exit

• One-time setup only for this training
source /opt/apps/samples/training/training_only_setup.sh
cd training

Follow along

Submitting Jobs

Submitting Batch Jobs to Kamiak

• Create/edit a job script
cat myJob.sh

• Submit the job script to the job queue
sbatch myJob.sh # To test: sbatch --test-only myJob.sh

• View the job queue
squeue -u your.name # Shows pending and running jobs
squeue -j jobNumber

• See output
cat myJob*.out

• Cancel the job
scancel jobNumber

• View past and active jobs
sacct -u your.name # Past job history
scontrol show job jobNumber # Job details

Follow along

Batch Job Script

kamiak$ cat myJob.sh

#!/bin/bash

#SBATCH --partition=kamiak # Partition/Queue to use

#SBATCH --job-name=myJob # Job name

#SBATCH --output=%x_%j.out # Output file (stdout)

#SBATCH --error=%x_%j.err # Error file (stderr)

#SBATCH --mail-type=ALL # Email notification: BEGIN,END,FAIL,ALL

#SBATCH --mail-user=your.name@wsu.edu # Email address for notifications

#SBATCH --time=7-00:00:00 # Wall clock time limit Days-HH:MM:SS

#SBATCH –-nodes=1 # Number of nodes (min-max) Where (layout)

#SBATCH –-ntasks-per-node=1 # Number of tasks per node (processes)

#SBATCH --cpus-per-task=2 # Number of cores per task (threads) What

echo "I am job $SLURM_JOBID running on nodes $SLURM_JOB_NODELIST"

module load python3 # Load software module from Kamiak repository

srun python3 helloWorld.py -w # Each task runs this program (total 1 times)

 # Each srun is a job step, and spawns -ntasks

echo "Completed job on node $HOSTNAME“

Output

Viewing Cluster Information

Viewing Information about the Cluster

• What partitions and nodes are available
sinfo -a | more # Availability (alloc, idle, mix)

• View all running and queued jobs
squeue -a | more # Queued jobs for all partitions

• View node details
scontrol show node cn93 # Amount of memory, cpus, GPUs

Follow along

Interactive Jobs

Interactive Jobs

• Create interactive session on a compute node
idev -N 1 --ntasks=1 --cpus-per-task=2 -t 360

• Module commands to set up app environment
module avail # Shows available apps for loaded compiler
module avail python3
module help python3/3.9.5 # See app-specific instructions,

resources differ for each app
module load python3/3.9.5 # Loads specific version (recommended)
module list # See loaded modules

• Run the app (use srun for multiple nodes, runs program once for each task)
python3 -i

print ("Hello World!")
exit()

srun -I python3 helloWorld.py # Use srun -I to avoid hanging if no resources
exit

Do not run applications or installs on the login nodes,

use sbatch or idev instead to run them on a compute node

Follow along

Same options as sbatch

Can ssh to node if have job on it

Interactive Jobs

kamiak$ idev -N 1 --ntasks=1 –cpus-per-task=2 -t 360

Idev interactively runs commands on a compute node.

See 'man salloc' for idev options to reserve a job allocation.

To use a GPU within idev: use 'srun yourCommand', e.g. 'srun python -i'.

To use X11 forwarding from a compute node:

 Use 'ssh -Y' or more secure 'ssh -X' to log into Kamiak.

 Within idev, use 'srun --x11' to launch a task with a user interface.

Recommend using 'srun -I' to launch a task without hanging.

Default time is 60 minutes. Use '-t yourMinutes' to override.

salloc: Granted job allocation 1160832

Allocated nodes: cn32

 # Module commands set up app environment

cn32$ module avail # Shows available apps for loaded compiler

cn32$ module help python3/3.9.5 # See any app-specific instructions

 # (Resources differ for each app)

cn32$ module load python3/3.9.5 # Loads specific version (recommended)

cn32$ module list # See loaded modules

Currently Loaded Modules:

1) intel/20.2 2) StdEnv 3) python3/3.9.5

Output

Interactive Jobs

cn32$ python3 -i

Python 3.9.5 (default, Jun 2 2021, 10:10:20)

[GCC 7.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> print ("Hello World!“)

Hello World!

>>> exit()

cn32$ srun -I python3 helloWorld.py

Hello World! from cn32

cn32$ exit

exit

salloc: Relinquishing job allocation 1160832

kamiak$

Use srun –I to avoid hanging

if resources are not available

Output

Job Arrays

Job Arrays

• Placeholder to create instances of a job as resources become available
#SBATCH --array=1-3 # Creates 3 job instances, one for each index 1,2,3

• Each instance is an individual job with the same resources

• Can use the index $SLURM_ARRAY_TASK_ID in many ways

• The below job splits data into 3 files: data_1.txt, data_2.txt, data_3.txt
cat jobArray.sh
sbatch jobArray.sh
squeue -u your.name
cat myJobArray*.out
scancel jobNumber

Use job arrays instead of submitting hundreds of individual jobs

Follow along

Job Array Script

kamiak$ $ cat jobArray.sh

#!/bin/bash

#SBATCH --partition=kamiak # Partition/Queue to use

#SBATCH --job-name=myJobArray # Job name

#SBATCH --output=%x_%A_%a.out # Output filename, jobname_jobid_index.out

#SBATCH --error=%x_%A_%a.err # Error filename, jobname_jobid_index.err

#SBATCH --time=7-00:00:00 # Wall clock time limit Days-HH:MM:SS

#SBATCH --mail-type=ALL # Email notification: BEGIN,END,FAIL,ALL

#SBATCH --mail-user=your.name@wsu.edu # Email address for notifications

#SBATCH --array=1-3:1 # Indices of job instances, in steps of 1

#SBATCH --nodes=1 # Number of nodes (min-max)

#SBATCH --ntasks-per-node=1 # Number of tasks per node (processes)

#SBATCH --cpus-per-task=1 # Number of cores per task (threads)

#SBATCH --mem-per-cpu=8G # Memory per core (gigabytes)

Placeholder to create instances of a job as resources become available

Creates 3 job instances, one for each index 1,2,3 ($SLURM_ARRAY_TASK_ID)

Each instance is an individual job with the above resources

Can use the index (in $SLURM_ARRAY_TASK_ID) in many ways

Below the index splits data into 3 files: data_1.txt, data_2.txt, data_3.txt

echo "Starting job array $SLURM_ARRAY_TASK_ID on host $HOSTNAME"

module load python3

srun python3 helloWorld.py –w ”inputs/data_${SLURM_ARRAY_TASK_ID}.txt"

echo "Completed job array $SLURM_ARRAY_TASK_ID on host $HOSTNAME"

Output

GPU Job Script

kamiak$ cat gpuJob.sh

#!/bin/bash

#SBATCH --partition=kamiak # Partition/Queue to use

#SBATCH --job-name=gpuJob # Job name

#SBATCH --output=%x_%j.out # Output file (stdout)

#SBATCH --error=%x_%j.err # Error file (stderr)

#SBATCH --mail-type=ALL # Email notification: BEGIN,END,FAIL,ALL

#SBATCH --mail-user=your.name@wsu.edu # Email address for notifications

#SBATCH --time=7-00:00:00 # Wall clock time limit Days-HH:MM:SS

#SBATCH –-nodes=1 # Number of nodes (min-max) Where (layout)

#SBATCH –-ntasks-per-node=1 # Number of tasks per node (processes)

#SBATCH --cpus-per-task=2 # Number of cores per task (threads) What

#SBATCH --gres=gpu:tesla:1 # Gpu's per node (up to 4)

echo "I am job $SLURM_JOBID running on nodes $SLURM_JOB_NODELIST"

module load cuda

srun nvidia-smi

echo "Completed job on node $HOSTNAME“

Output

Storage

Using Scratch Storage

• Create a scratch directory that expires in two weeks
mkworkspace
export myscratch="$(mkworkspace)" # Can use inside or outside a job script
echo $myscratch

• List your scratch allocations
lsworkspace

• Can optionally delete contents when done
rm -r -I $myscratch/*

Snapshots

• Three days of read-only backups of home and data folders
ls /home/.snapshots
ls /home/.snapshots/daily.*/your.name

Follow along

Modules

Using Available Software on Kamiak

module avail # Available modules compatible with compiler
module load python3/3.9.5 # Load specific version (recommended)
module list # See loaded modules
module avail python3 # See available python3 modules
module load python3 # Load latest version
module unload python3 # Unload a module
module spider # See all modules
module whatis anaconda3 # See what a module does
module help anaconda3 # See help for a module
which python3 # See that python is in your path
printenv PATH # See effects of loading modules
printenv LD_LIBRARY_PATH

Follow along

Getting Help

Getting Help

hpc.wsu.edu Support & Zoom Help Desk Hours
hpc.wsu.edu/cheat-sheet User’s Guide / Kamiak Cheat Sheet
hpc.wsu.edu/training/slides These slides

Being a Good User

Kamiak is a shared cluster for all of WSU and your access to it is a

privilege. Its resources are finite and care must be taken to ensure its

continued usefulness for yourself and the research community.

Do

Don’t

• Cite Kamiak in your work

• Report issues via Kamiak’s Service Desk

• Abide by Kamiak’s End User License Agreement and WSU policies

• Use accurate resource requirements (CPU, time, memory)

• Do not run applications or installs on a login node,

use sbatch or idev to run on a compute node

• Do not submit thousands of jobs – use job arrays

• Do not give your password to anyone, ever

Purchasing Nodes and Renting Extra Storage

• All users have access to the backfill queue, /home and /scratch

storage, and any /data/lab storage made available by their PI

• If you need more → have your PI become an investor

• Submit a service request to purchase nodes or rent extra storage

• Nodes are permanently owned by the investor with a 5-year warranty

• Storage can be rented annually in units of 512GB per year

• Standard compute nodes

• 64-cores Intel Xeon Gold, 512GB memory

• Optional Nvidia A100 GPU’s

• Optional large-memory, 1-2TB

• For price quotes, please submit a service request

For detailed node descriptions, please see

hpc.wsu.edu/kamiak-hpc/becoming-an-investor/

The End

• We will be sending out a survey to get your feedback

about this training event

• Other training sessions are planned throughout the year –

let us know in the survey what topics would be of interest

• Other ways to learn more and participate in Kamiak

governance:

– CIRC Advisory Committee - share your ideas with its members

– WSU HPC club - 4 nodes purchased through Tech Fee grant

	Slide 1
	Slide 2: What you will learn today
	Slide 3: What is Kamiak
	Slide 4: Kamiak Storage
	Slide 5: Running Jobs on Kamiak
	Slide 6: How to Run Jobs on Kamiak
	Slide 7: Types of Jobs
	Slide 8: Transferring Files
	Slide 9: Logging In
	Slide 10: Submitting Jobs
	Slide 11: Batch Job Script
	Slide 12: Viewing Cluster Information
	Slide 13: Interactive Jobs
	Slide 14: Interactive Jobs
	Slide 15: Interactive Jobs
	Slide 16: Job Arrays
	Slide 17: Job Array Script
	Slide 18: GPU Job Script
	Slide 19: Storage
	Slide 20: Modules
	Slide 21: Getting Help
	Slide 22: Being a Good User
	Slide 23: Purchasing Nodes and Renting Extra Storage
	Slide 24: The End

