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What you will learn today

• What is Kamiak

• How to run jobs on Kamiak

– Submit batch jobs

– Interactive compute session

– Types of jobs

• Exercises

• Transferring files to and from Kamiak

• Logging into Kamiak

• Running batch jobs

• Running an interactive compute session

• Running job arrays

• Running gpu jobs

• Using scratch storage

• Using snapshots



What is Kamiak

• A cluster of computers called nodes, connected by a high-speed network

• Each computer is like your laptop, but with more cores and memory 

• Applications can run in parallel over many cores and across multiple nodes

• Speeds up solving large problems

Login nodes

Compute nodes

Your laptop

/scratch/home /data

Nodes: 152

Cores: 4,616

Memory: 47 TB

Storage: 1.2 PB

GPU cores: 268,160



Kamiak Storage

• Kamiak has 3 types of storage available to users

/home/your.name 100GB per user

/data/lab/pi.labname 500GB per faculty lab group

Extra storage is available for rent from the CIRC service center

/scratch Temporary storage, 2-week lifetime, 10TB limit per user

Login nodes

Compute nodes

Your laptop

/scratch/home /data



Running Jobs on Kamiak

• Nodes are grouped into partitions, each owned by a faculty or college

• All nodes also belong to a shared kamiak partition, available to all users

• You submit a job to a partition asking for nodes, tasks, and cores

• Job gets added to a partition’s queue to wait until resources are available

• Slurm job scheduler decides who goes first, who gets what, who gets bumped

• Investors have priority access to the nodes they own

• Will preempt job in backfill if investor’s job needs its cores

• Applications only run in parallel if built to do so

• Resource requirements differ for each app



How to Run Jobs on Kamiak

There are two ways to run jobs on Kamiak

• sbatch myJob.sh Batch job submission

– Says which partition to submit to  (default is kamiak)

– Says what resources your job needs (cpu’s/cores, memory, GPU’s)

– Says what program to run

• idev Interactive session on compute node

– Puts you on a compute node

– Just type in commands and see them executed

Do not run applications or installs on the login nodes,

use sbatch or idev instead to run them on a compute node



Types of Jobs

• Single node

– Single program instance

– Multithreading over multiple cores

– Threads share memory

• Multiple nodes

– Each task is a program instance

– Tasks do not share memory

– Communicate by message-passing

• GPU (Graphics Processing Unit)

– Thousands of tiny pixel cores, and matrix processors

– Offloads kernel function to run over many data points

– Requires CUDA, OpenACC

See samples in: /opt/apps/samples/advanced

GPU Offload

Result



Transferring Files

Transferring Files to and from Kamiak

Make sure you are on your laptop, not logged into Kamiak

• Open a terminal window
Terminal >> New Window   (for Windows,  Start >> Ubuntu)

• Copy from Kamiak to your laptop
scp -r  your.name@kamiak.wsu.edu:/opt/apps/samples/tests  ~/

 Recursive, copies all files  From Kamiak  To laptop
ls -l -R tests

• Copy from your laptop to Kamiak
scp -r  tests   your.name@kamiak.wsu.edu:~/

 From my laptop  To my home folder on Kamiak

• Synchronize folder contents  (copies changed or added files, does not delete)
rsync -ravx tests/    your.name@kamiak.wsu.edu:~/tests

 All files  From laptop  To Kamiak

Follow along



Logging In

Logging Into Kamiak

• Open a terminal window
Terminal >> New Window   (for Windows,  Start >> Ubuntu)

• Log into Kamiak
ssh your.name@kamiak.wsu.edu # To logout:    exit

• One-time setup only for this training
source   /opt/apps/samples/training/training_only_setup.sh
cd training

Follow along



Submitting Jobs

Submitting Batch Jobs to Kamiak

• Create/edit a job script
cat myJob.sh

• Submit the job script to the job queue
sbatch myJob.sh # To test:  sbatch --test-only myJob.sh

• View the job queue
squeue -u your.name # Shows pending and running jobs
squeue -j jobNumber

• See output
cat myJob*.out

• Cancel the job
scancel jobNumber

• View past and active jobs
sacct -u your.name # Past job history
scontrol show job jobNumber # Job details

Follow along



Batch Job Script

kamiak$ cat myJob.sh

#!/bin/bash

#SBATCH --partition=kamiak # Partition/Queue to use

#SBATCH --job-name=myJob  # Job name

#SBATCH --output=%x_%j.out # Output file (stdout)

#SBATCH --error=%x_%j.err # Error file (stderr)

#SBATCH --mail-type=ALL  # Email notification: BEGIN,END,FAIL,ALL

#SBATCH --mail-user=your.name@wsu.edu # Email address for notifications

#SBATCH --time=7-00:00:00 # Wall clock time limit Days-HH:MM:SS

#SBATCH –-nodes=1  # Number of nodes (min-max)   Where (layout)

#SBATCH –-ntasks-per-node=1 # Number of tasks per node (processes)

#SBATCH --cpus-per-task=2 # Number of cores per task (threads) What

echo "I am job $SLURM_JOBID running on nodes $SLURM_JOB_NODELIST"

module load python3  # Load software module from Kamiak repository

srun python3 helloWorld.py -w # Each task runs this program (total 1 times)

    # Each srun is a job step, and spawns -ntasks

echo "Completed job on node $HOSTNAME“

Output



Viewing Cluster Information

Viewing Information about the Cluster

• What partitions and nodes are available
sinfo -a | more # Availability (alloc, idle, mix)

• View all running and queued jobs
squeue -a | more # Queued jobs for all partitions

• View node details
scontrol show node cn93 # Amount of memory, cpus, GPUs

Follow along



Interactive Jobs

Interactive Jobs

• Create interactive session on a compute node
idev -N 1 --ntasks=1 --cpus-per-task=2 -t 360

• Module commands to set up app environment
module avail # Shows available apps for loaded compiler
module avail python3
module help python3/3.9.5 # See app-specific instructions,

# resources differ for each app
module load python3/3.9.5 # Loads specific version (recommended)
module list # See loaded modules

• Run the app   (use srun for multiple nodes, runs program once for each task)
python3 -i

print ("Hello World!")
exit()

srun -I python3 helloWorld.py # Use srun -I to avoid hanging if no resources
exit

Do not run applications or installs on the login nodes,

use sbatch or idev instead to run them on a compute node

Follow along

Same options as sbatch

Can ssh to node if have job on it



Interactive Jobs

kamiak$ idev -N 1 --ntasks=1 –cpus-per-task=2 -t 360

Idev interactively runs commands on a compute node.

See 'man salloc' for idev options to reserve a job allocation.

To use a GPU within idev: use 'srun yourCommand', e.g. 'srun python -i'.

To use X11 forwarding from a compute node:

  Use 'ssh -Y' or more secure 'ssh -X' to log into Kamiak.

  Within idev, use 'srun --x11' to launch a task with a user interface.

Recommend using 'srun -I' to launch a task without hanging.

Default time is 60 minutes.  Use '-t yourMinutes' to override.

salloc: Granted job allocation 1160832

Allocated nodes: cn32

    # Module commands set up app environment

cn32$ module avail  # Shows available apps for loaded compiler

cn32$ module help python3/3.9.5 # See any app-specific instructions

    #      (Resources differ for each app)

cn32$ module load python3/3.9.5 # Loads specific version (recommended)

cn32$ module list  # See loaded modules

Currently Loaded Modules:

1) intel/20.2   2) StdEnv   3) python3/3.9.5

Output



Interactive Jobs

cn32$ python3 -i

Python 3.9.5 (default, Jun  2 2021, 10:10:20)

[GCC 7.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> print ("Hello World!“)

Hello World!

>>> exit()

cn32$ srun -I python3 helloWorld.py

Hello World! from cn32

cn32$ exit

exit

salloc: Relinquishing job allocation 1160832

kamiak$

Use  srun –I  to avoid hanging 

if resources are not available

Output



Job Arrays

Job Arrays

• Placeholder to create instances of a job as resources become available
#SBATCH --array=1-3           # Creates 3 job instances, one for each index 1,2,3  

• Each instance is an individual job with the same resources

• Can use the index $SLURM_ARRAY_TASK_ID in many ways

• The below job splits data into 3 files:  data_1.txt, data_2.txt, data_3.txt
cat  jobArray.sh
sbatch jobArray.sh
squeue -u your.name
cat myJobArray*.out
scancel jobNumber

Use job arrays instead of submitting hundreds of individual jobs

Follow along



Job Array Script

kamiak$ $ cat jobArray.sh

#!/bin/bash

#SBATCH --partition=kamiak # Partition/Queue to use

#SBATCH --job-name=myJobArray # Job name

#SBATCH --output=%x_%A_%a.out # Output filename, jobname_jobid_index.out

#SBATCH --error=%x_%A_%a.err # Error filename, jobname_jobid_index.err

#SBATCH --time=7-00:00:00 # Wall clock time limit Days-HH:MM:SS

#SBATCH --mail-type=ALL  # Email notification: BEGIN,END,FAIL,ALL

#SBATCH --mail-user=your.name@wsu.edu  # Email address for notifications

#SBATCH --array=1-3:1  # Indices of job instances, in steps of 1

#SBATCH --nodes=1  # Number of nodes (min-max)

#SBATCH --ntasks-per-node=1 # Number of tasks per node (processes)

#SBATCH --cpus-per-task=1 # Number of cores per task (threads)

#SBATCH --mem-per-cpu=8G  # Memory per core (gigabytes)

# Placeholder to create instances of a job as resources become available

# Creates 3 job instances, one for each index 1,2,3 ($SLURM_ARRAY_TASK_ID)

# Each instance is an individual job with the above resources

# Can use the index (in $SLURM_ARRAY_TASK_ID) in many ways

# Below the index splits data into 3 files: data_1.txt, data_2.txt, data_3.txt

echo "Starting job array $SLURM_ARRAY_TASK_ID on host $HOSTNAME"

module load python3

srun python3 helloWorld.py –w ”inputs/data_${SLURM_ARRAY_TASK_ID}.txt"

echo "Completed job array $SLURM_ARRAY_TASK_ID on host $HOSTNAME"

Output



GPU Job Script

kamiak$ cat gpuJob.sh

#!/bin/bash

#SBATCH --partition=kamiak # Partition/Queue to use

#SBATCH --job-name=gpuJob # Job name

#SBATCH --output=%x_%j.out # Output file (stdout)

#SBATCH --error=%x_%j.err # Error file (stderr)

#SBATCH --mail-type=ALL  # Email notification: BEGIN,END,FAIL,ALL

#SBATCH --mail-user=your.name@wsu.edu # Email address for notifications

#SBATCH --time=7-00:00:00 # Wall clock time limit Days-HH:MM:SS

#SBATCH –-nodes=1  # Number of nodes (min-max)   Where (layout)

#SBATCH –-ntasks-per-node=1 # Number of tasks per node (processes)

#SBATCH --cpus-per-task=2 # Number of cores per task (threads) What

#SBATCH --gres=gpu:tesla:1 # Gpu's per node (up to 4)

echo "I am job $SLURM_JOBID running on nodes $SLURM_JOB_NODELIST"

module load cuda

srun nvidia-smi

echo "Completed job on node $HOSTNAME“

Output



Storage

Using Scratch Storage

• Create a scratch directory that expires in two weeks
mkworkspace
export myscratch="$(mkworkspace)" # Can use inside or outside a job script
echo $myscratch

• List your scratch allocations
lsworkspace

• Can optionally delete contents when done
rm -r -I $myscratch/*

Snapshots

• Three days of read-only backups of home and data folders
ls /home/.snapshots 
ls /home/.snapshots/daily.*/your.name

Follow along



Modules

Using Available Software on Kamiak

module avail # Available modules compatible with compiler
module load python3/3.9.5 # Load specific version (recommended)
module list # See loaded modules
module avail python3 # See available python3 modules
module load python3 # Load latest version
module unload python3 # Unload a module
module spider # See all modules
module whatis anaconda3 # See what a module does
module help anaconda3 # See help for a module
which python3 # See that python is in your path
printenv PATH # See effects of loading modules
printenv LD_LIBRARY_PATH

Follow along



Getting Help

Getting Help

hpc.wsu.edu Support & Zoom Help Desk Hours
hpc.wsu.edu/cheat-sheet    User’s Guide / Kamiak Cheat Sheet
hpc.wsu.edu/training/slides These slides



Being a Good User

Kamiak is a shared cluster for all of WSU and your access to it is a 

privilege.  Its resources are finite and care must be taken to ensure its 

continued usefulness for yourself and the research community.

Do

Don’t

• Cite Kamiak in your work

• Report issues via Kamiak’s Service Desk

• Abide by Kamiak’s End User License Agreement and WSU policies

• Use accurate resource requirements (CPU, time, memory)

• Do not run applications or installs on a login node, 

use sbatch or idev  to run on a compute node

• Do not submit thousands of jobs – use job arrays

• Do not give your password to anyone, ever



Purchasing Nodes and Renting Extra Storage

• All users have access to the backfill queue, /home and /scratch 

storage, and any /data/lab storage made available by their PI

• If you need more → have your PI become an investor

• Submit a service request to purchase nodes or rent extra storage

• Nodes are permanently owned by the investor with a 5-year warranty

• Storage can be rented annually in units of 512GB per year

• Standard compute nodes

• 64-cores Intel Xeon Gold, 512GB memory

• Optional Nvidia A100 GPU’s

• Optional large-memory, 1-2TB

• For price quotes, please submit a service request 

For detailed node descriptions, please see

hpc.wsu.edu/kamiak-hpc/becoming-an-investor/



The End

• We will be sending out a survey to get your feedback 

about this training event

• Other training sessions are planned throughout the year –

let us know in the survey what topics would be of interest

• Other ways to learn more and participate in Kamiak 

governance:

– CIRC Advisory Committee - share your ideas with its members

– WSU HPC club - 4 nodes purchased through Tech Fee grant
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